Autor: |
Osita Robinson Madu, Jerry Orrelo Athoja, Amarachi Queen Kalu, Obi Mike Onyekonwu |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Day 2 Tue, August 03, 2021. |
DOI: |
10.2118/207116-ms |
Popis: |
In-depth knowledge of geostatistical analysis, environment of deposition and reservoir facies types is important for optimal distribution of reservoir properties across the reservoir grid. Geostatistics is a veritable tool that is quantitatively used to model spatial continuity, anisotropy direction and capture reservoir heterogeneity for optimal distribution of reservoir properties. When spatial continuity and heterogeneity level of the reservoir are adequately understood and modeled, representative property distribution becomes possible. In the face of limited well data, modeling major and minor directions of horizontal variogram is highly impaired and it becomes difficult to adequately distribute properties within the reservoir grid with enough control. This study is focused on the integration of seismic data, core data, well logs and geological knowledge to carry out geostatistical analysis to optimally distribute facies, porosity and permeability properties within the grid. The degree of reservoir heterogeneity was determined quantitatively using semivariogram and Lorenz plots of core porosity and permeability data. Variogram map generated from seismic attribute was used in combination with the sparse well data points to determine the horizontal variogram. The available well data was adequate enough to model the vertical variogram. The environment of deposition was interpreted as lower to upper shoreface with channel deposits and some shallow marine influence. The properties were normal-scored and modeled with the determined variogram parameters while biasing them with facies. Results of the semivariogram and Lorenz plots showed that the reservoir is fairly heterogenous in terms of spatial continuity. Major direction of the geological continuity is in the Northeast-Southwest direction while the minor direction is orthogonal to it. Final result of the modeled properties was in consonance with the facies types described from the environment of deposition. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|