Assessing damage pattern at depth near the Alpine Fault, New Zealand

Autor: Mai-Linh Doan, Virginia Toy, Rupert Sutherland, John Townend
Rok vydání: 2022
DOI: 10.5194/egusphere-egu22-6166
Popis: The Alpine Fault is the principal component of the plate boundary through the South Island of New Zealand, separating the Pacific and Indo-Australian Plates. It is recognised internationally as an important site for studying earthquake physics and tectonic deformation, as it produces large (M7-8) earthquakes approximately every 330 years and last ruptured in 1717. Therefore, the fault is considered to be late in its seismic cycle. It accommodates dextral-slip at a rate of 26 mm/yr with reverse slip at a maximum rate of 10 mm/yr in its central part, thus exhumed a fossil ductile shear zone, that was damaged brittlely during its exhumation. The central Alpine Fault is the focus of the Deep Fault Drilling Project (DFDP), sponsored by the International Continental Drilling Project, which takes advantage of its globally rare tectonic situation to determine what temperatures, fluid pressures, and stresses exist within a plate-boundary fault in advance of an expected large earthquake. During DFDP phase II in 2014, an ~ 900 m drilled well that encountered an exceptionally high geothermal gradient (120 °C/km was measured in the borehole), was extensively characterized by repeated electric and sonic logs. These logs enable detailed study of fracture patterns near a major fault. The more than 19 km of logs run within the borehole gathered datasets covering, among others, thermal resistivity, sonic velocities, acoustic borehole imaging, and electrical resistivity. They show that the hanging wall is extensively fractured, explaining the high geothermal gradient measured in the borehole by lateral flow of hot water deep seated in the mountains. We particularly focus on seven dual laterolog logs that provide a robust and reproducible dataset from which to determine the positions and orientations of conductive fractures. From these, different patterns of damage could be identified within the well. A first pattern consists of an extensive and dense pattern of isolated fractures that could be identified throughout the borehole. A second pattern suggests that decametric zones of low resistivity localize damage and focus thermal anomalies. This suggests hierarchy of damage zone evolution of the damage zone of the Alpine Fault. A possible explanation is an initial phase of diffuse fracturing (pattern 1) that is followed by subsequent alteration of the major shear zone, which focuses fluid and heat flow (pattern 2).
Databáze: OpenAIRE