Novel composites of Zn1−xCdxO (x = 0, 0.05, 0.1) thick films for optoelectronic device application

Autor: Santosh Chackrabarti, Aurangzeb Khurram Hafiz, Md. Shahabuddin, Rayees Ahmad Zargar, Manju Arora, Jitendra Kumar
Rok vydání: 2015
Předmět:
Zdroj: Journal of Materials Science: Materials in Electronics. 26:10027-10033
ISSN: 1573-482X
0957-4522
DOI: 10.1007/s10854-015-3683-y
Popis: The pure and cadmium doped zinc oxide (Cd–ZnO) thick films were deposited on glass substrates by screen printing method from their nanopowders, followed by sintering at 550 °C to obtain desired stoichiometry and better adherence of films. The structural, morphological, optical and electrical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) with UV–visible spectroscopy, Fourier transform infrared spectroscopy, photoluminescence (PL) and two probe techniques. XRD patterns confirm hexagonal wurtzite structure with single phase of all the samples and SEM micrographs reveal granular grains and porosity in films. The incorporation of cadmium in ZnO lattice is confirmed by IR transmission and Raman spectrum. The E2 (high) phonon and multiphoton modes are observed at 433 and 1136 cm−1 respectively in Raman spectra. The recombination of free and neutral bound excitons near band edge emission are observed in PL spectra. UV–visible measurement confirms the direct band gap that decrease from 3.27 to 3.18 eV and resistivity measurement shows semiconducting nature of the films with decreasing activation energy from 0.31 to 0.26 eV respectively on increasing Cd2+ content due to increase in lattice parameters on doping bigger Cd2+ ions at Zn sites in ZnO.
Databáze: OpenAIRE