Aspergillus galactose metabolism is more complex than that of Saccharomyces: the story of GalDGAL7 and GalEGAL1

Autor: Md. Kausar Alam, Susan G.W. Kaminskyj
Rok vydání: 2013
Předmět:
Zdroj: Botany. 91:467-477
ISSN: 1916-2804
1916-2790
DOI: 10.1139/cjb-2012-0270
Popis: Saccharomyces cerevisiae Hansen GAL1 (galactokinase) generates galactose-1-phosphate; GAL7 (galactose-1-phosphate uridylyltransferase) transfers UDP between galactose or glucose and their respective sugar-1-phosphate conjugates, and both are essential on galactose. Aspergillus nidulans ANID_04957 has 41% amino acid sequence identity with GAL1; ANID_06182 has 50% sequence identity with GAL7. The names Aspergillus nidulans GalE (galactokinase) and GalD (galactose-1-phosphate uridylyltransferase) are consistent with prior studies. Complemented galDΔ:ScGAL7 and galEΔ:ScGAL1 strains had wild-type phenotype, demonstrating functional homology. The galD5 and galE9 alleles were truncated. Strains galDΔ and galD5 were impaired on minimal medium containing 1% galactose (MM-Gal) at pH 7.5 and did not grow on MM-Gal pH 4.5. Strains galEΔ and galE9 grew on MM-Gal at both pH levels. Strains galDΔ and galEΔ produced wild-type conidiophores on minimal medium containing 1% glucose (MM-Glu) but few spores; for both, sporulation was lower on MM-Gal pH 7.5. GalD-GFP (green fluorescent protein) and GalE-GFP were cytosolic and upregulated on MM-Gal, consistent with quantitative real-time polymerase chain reaction. Galactofuranose immunolocalization in galDΔ resembled wild type on MM-Glu but was reduced on MM-Gal. The galEΔ strains had immunolocalizable Galf on all these media. Strains galDΔ and galEΔ were more sensitive to calcofluor, caspofungin, and itraconazole on MM-Gal. Neither galD nor galE is essential on galactose at high pH, implying additional routes for galactose metabolism in Aspergillus. Aspergillus galactose metabolism is more complex than that of S. cerevisiae.
Databáze: OpenAIRE