Reconfigurable and Traffic-Aware MAC Design for Virtualized Wireless Networks via Reinforcement Learning

Autor: Mahsa Derakhshani, Atoosa Dalili Shoaei, Tho Le-Ngoc
Rok vydání: 2019
Předmět:
Zdroj: IEEE Transactions on Communications. 67:5490-5505
ISSN: 1558-0857
0090-6778
DOI: 10.1109/tcomm.2019.2913413
Popis: In this paper, we present a reconfigurable MAC scheme where the partition between contention-free and contention-based regimes in each frame is adaptive to the network status leveraging reinforcement learning. In particular, to support a virtualized wireless network consisting of multiple slices, each having heterogeneous and unsaturated devices, the proposed scheme aims to configure the partition for maximizing network throughput while maintaining the slice reservations. Applying complementary geometric programming and monomial approximations, an iterative algorithm is developed to find the optimal solution. For a large number of devices, a scalable algorithm with lower computational complexity is also proposed. The partitioning algorithm requires the knowledge of the device traffic statistics. In the absence of such knowledge, we develop a learning algorithm employing Thompson sampling to acquire packet arrival probabilities of devices. Furthermore, we model the problem as a thresholding multi-armed bandit and propose a threshold-based reconfigurable MAC algorithm, which is proved to achieve the optimal regret bound.
Databáze: OpenAIRE