Destructive effect of polystyrene sulfonate on the structure of hemoproteins

Autor: Yu. N. Dybovskaya, E. A. Saburova, L. V. Basova, B. I. Sukhorukov
Rok vydání: 2006
Předmět:
Zdroj: Russian Journal of Physical Chemistry. 80:1325-1335
ISSN: 1531-863X
0036-0244
DOI: 10.1134/s0036024406080280
Popis: The mechanism of the destruction of horse heart hemoglobin (Hb) and spermwhale muscle myoglobin (Mb), two hem-containing proteins, by polystyrene sulfonate, an anionic polyelectrolyte, was studied. Measurements of the optical absorption of the prostetic group of the hem in the visible spectrum and of the circular dichroism in the absorption bands of the peptide groups and aromatic amino acid residues demonstrated that the compact structure of both proteins experiences destruction in the presence of polystyrene sulfonate (PSS) at PSS concentrations ten times as low as that of the protein (in wt %) and that the content of α-helix structure in Hb and Mb decreases from 81% in the native state to 43% in their complexes with PSS. The distinctions in the mechanisms of the destruction of Hb and Mb by PSS were found to be as follows: (1) in contrast to Mb, Hb forms insoluble complexes with PSS at low PSS concentrations and (2) Mb-PSS solutions at Mb-to-PSS ratios >1 were found to contain free hems (that absorb at 397 nm), a feature not observed for Hb; the kinetics of the destruction of both the proteins by the polyelectrolyte was demonstrated to be a two-stage process. The first stage of the destruction of Hb (τ ≈ 24.5 s) was found to be four times as slow as that of Mb (τ ≈ 6 s); the second (slow) stage had a halftime of ∼6 h for both the proteins under study. To determine the localization of regions at the protein molecule surface that are capable of binding polyelectrolyte molecules, the distribution of the electrostatic potential over the surface of the Hb and Mb molecules was numerically calculated with the help of the Poisson-Boltzmann equation at pH 6.2 and an ionic strength of 100 mmol/l. Based on experimental and theoretical studies of the mechanism of the interaction of the polyelectrolyte with the proteins, the structural-functional properties of proteins responsible for their destruction by the polyelectrolyte are determined.
Databáze: OpenAIRE