Popis: |
One of the most important applications of polymeric porous nanomaterials is the design of nanoporous structures for operation in patch-clamp systems allowing to establish a gigaohm contact, as well as for the measurements of biomolecules, informational macromolecules, including DNA, translocating through the nanopore arrays. Development of nanopore sequencing techniques leads to fundamentally new big data arrays, but their representativeness and validity, as well as the validity of counting of biomacromolecular particles based on ultramicropore arrays, strongly depends both on the pore size (in engineering lithography unimodal pore size distribution is optimal) and the accuracy of the size distribution measurements using instrumental methods. However, the former is unattainable when using soft matter or stretchable, plastic and elastic polymer materials and films, while the latter depends on the metrological parameters of the instrumental and algorithmic porosimetry techniques. Therefore in this paper the question about the applicability of polymer materials with pore arrays for the studies of biomacromolecules and bionanostructures is proposed to be answered using a comparative analysis of two different porosimetry approaches with the resolution not lower than electron microscopic one. |