Belief Digitization: Do We Treat Uncertainty as Probabilities or as Bits?

Autor: Samuel Gregory Blane Johnson, Thomas Merchant, Frank Keil
Rok vydání: 2022
DOI: 10.31234/osf.io/wnszm
Popis: Humans are often characterized as Bayesian reasoners. Here, we question the core Bayesian assumption that probabilities reflect degrees of belief. Across 8 studies, we find that people instead reason in a digital manner, assuming that uncertain information is either true or false when using that information to make further inferences. Participants learned about two hypotheses, both consistent with some information but one more plausible than the other. Although people explicitly acknowledged that the less-plausible hypothesis had positive probability, they ignored this hypothesis when using the hypotheses to make predictions. This was true across several ways of manipulating plausibility (simplicity, evidence fit, explicit probabilities) and a diverse array of task variations. Taken together, the evidence suggests that digitization occurs in prediction because it circumvents processing bottlenecks surrounding people’s ability to simulate outcomes in hypothetical worlds. These findings have implications for philosophy of science and for the organization of the mind.
Databáze: OpenAIRE