Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix

Autor: Zhong-Zhi Bai, Apostolos Hadjidimos
Rok vydání: 2014
Předmět:
Zdroj: Linear Algebra and its Applications. 463:322-339
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.08.021
Popis: For the extrapolated Cayley transform, we give necessary and sufficient conditions for guaranteeing its convergence and contraction (in the Euclidean norm). We derive upper bounds for the convergence and the contraction factors, and compute the optimal parameters minimizing these upper bounds and the corresponding optimal values of these upper bounds. Numerical computations show that these upper bounds are reasonably sharp compared with the exact convergence and the exact contraction factors of the extrapolated Cayley transform, respectively.
Databáze: OpenAIRE