Continuity of the flow and robustness for evolution equations with non globally Lipschitz forcing term

Autor: Marcos Roberto Teixeira Primo, Mariza Stefanello Simsen, Jacson Simsen
Rok vydání: 2019
Předmět:
Zdroj: São Paulo Journal of Mathematical Sciences. 14:223-241
ISSN: 2316-9028
1982-6907
DOI: 10.1007/s40863-019-00133-8
Popis: We study the sensitivity with respect to exponent and diffusion parameters for the problem $$\begin{aligned} \left\{ \begin{array}{l}\frac{\partial u_{\lambda }}{\partial t}-\text {div}(D_{\lambda }(x)|\nabla u_{\lambda }|^{p_{\lambda }(x)-2}\nabla u_{\lambda })+f(x,u_{\lambda })=g(x),\;\; t>0,\\ u_{\lambda }(0)=u_{0\lambda },\end{array}\right. \end{aligned}$$ under homogeneous Dirichlet boundary conditions, where \(\lambda \in [0,\lambda _0],\)\(\varOmega \subset {\mathbb {R}}^n\) (\(n\ge 1\)) is a smooth bounded domain, \(u_{0\lambda }\in H:=L^2(\varOmega ),\)\(g\in L^2(\varOmega ),\)\(p_\lambda (\cdot ) \rightarrow p(\cdot )\), \(D_\lambda (\cdot ) \rightarrow D(\cdot )\) in \(L^\infty (\varOmega )\) as \(\lambda \rightarrow 0,\) and \(f:\varOmega \times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a non globally Lipschitz Caratheodory mapping. We prove continuity of the flow and upper semicontinuity of the family of global attractors.
Databáze: OpenAIRE