Lifetime maximization of wireless sensor network using fuzzy based unequal clustering and ACO based routing hybrid protocol

Autor: Sariga Arjunan, P. Sujatha
Rok vydání: 2017
Předmět:
Zdroj: Applied Intelligence. 48:2229-2246
ISSN: 1573-7497
0924-669X
DOI: 10.1007/s10489-017-1077-y
Popis: Wireless Sensor Networks (WSN) became a key technology for a ubiquitous living and remains an active research due to the wide range of applications. The design of energy efficient WSN is still a greater research challenge. Clustering techniques have been widely used to reduce the energy consumption and prolong the network lifetime. This paper introduces an algorithm named Fuzzy logic based Unequal clustering, and Ant Colony Optimization (ACO) based Routing, Hybrid protocol for WSN to eliminate hot spot problem and extend the network lifetime. This protocol comprises of Cluster Head (CH) selection, inter-cluster routing and cluster maintenance. Fuzzy logic selects CHs efficiently and divides the network into unequal clusters based on residual energy, distance to Base Station (BS), distance to its neighbors, node degree and node centrality. It uses ACO based routing technique for efficient and reliable inter-cluster routing from CHs to BS. Moreover, this protocol transmits data in a hybrid manner, i.e. both proactive and reactive manner. A threshold concept is employed to transmit/intimate sudden changes in the environment in addition to periodic data transmission. For proper load balancing, a new routing strategy is also employed where threshold based data transmission takes place in shortest path and the periodic data transmission takes place in unused paths. Cross-layer cluster maintenance phase is also used for uniform load distribution. The proposed method is intensively experimented and compared with existing protocols namely LEACH, TEEN, DEEC and EAUCF. The simulation results show that the proposed method attains maximum lifetime, eliminates hot spot problem and balances the energy consumption among all nodes efficiently.
Databáze: OpenAIRE