Reciprocal regulation of actin cytoskeleton remodelling and cell migration by calcium and zinc: role of TRPM2 channels

Autor: Asipu Sivaprasadarao, Nada Abuarab, Fangfang Li
Rok vydání: 2016
Předmět:
Zdroj: Journal of Cell Science.
ISSN: 1477-9137
0021-9533
DOI: 10.1242/jcs.179796
Popis: Cell migration is a fundamental feature of tumour metastasis and angiogenesis. It is regulated by a variety of signalling molecules including H2O2 and Ca(2+) Here, we asked whether the H2O2-sensitive transient receptor potential melastatin 2 (TRPM2) Ca(2+) channel serves as a molecular link between H2O2 and Ca(2+) H2O2-mediated activation of TRPM2 channels induced filopodia formation, loss of actin stress fibres and disassembly of focal adhesions, leading to increased migration of HeLa and prostate cancer (PC)-3 cells. Activation of TRPM2 channels, however, caused intracellular release of not only Ca(2+) but also of Zn(2+) Intriguingly, elevation of intracellular Zn(2+) faithfully reproduced all of the effects of H2O2, whereas Ca(2+) showed opposite effects. Interestingly, H2O2 caused increased trafficking of Zn(2+)-enriched lysosomes to the leading edge of migrating cells, presumably to impart polarisation of Zn(2+) location. Thus, our results indicate that a reciprocal interplay between Ca(2+) and Zn(2+) regulates actin remodelling and cell migration; they call for a revision of the current notion that implicates an exclusive role for Ca(2+) in cell migration.
Databáze: OpenAIRE