Neural Network Application for Phasechronometric Measurement Information Processing
Autor: | D. D. Boldasov, A. S. Komshin, A. B. Syritskii, J. V. Drozdova |
---|---|
Rok vydání: | 2020 |
Předmět: |
Artificial neural network
Computer science Applied Mathematics Computer Science::Neural and Evolutionary Computation Novelty Process (computing) Information processing Perceptron computer.software_genre Idle ComputingMethodologies_PATTERNRECOGNITION Binary classification Data mining Instrumentation computer |
Zdroj: | Measurement Techniques. 63:708-712 |
ISSN: | 1573-8906 0543-1972 |
DOI: | 10.1007/s11018-021-01843-2 |
Popis: | This paper reports the application of neural networks in various fields of activity. In specific, it describes the use of neural networks to process phasechronometric measurement information. The novelty of the proposed approach lies in the choice of a classification attribute and the use of a perceptron algorithm for binary classification. The simplest binary classification of the lathe operating modes (idle or cutting) is presented. |
Databáze: | OpenAIRE |
Externí odkaz: |