Highly Available Hypercube Tokenized Sequential Matrix Partitioned Data Sharing in Large P2P Networks
Autor: | C. G. Ravichandran, J. Lourdu Xavier |
---|---|
Rok vydání: | 2016 |
Předmět: |
020203 distributed computing
Computer science Distributed computing Minimum time General Engineering 020206 networking & telecommunications 02 engineering and technology Energy consumption Data availability Data mapping Data sharing Transpose 0202 electrical engineering electronic engineering information engineering Hypercube Latency (engineering) |
Zdroj: | Circuits and Systems. :2109-2119 |
ISSN: | 2153-1293 2153-1285 |
Popis: | Peer-to-peer (P2P) networking is a distributed architecture that partitions tasks or data between peer nodes. In this paper, an efficient Hypercube Sequential Matrix Partition (HS-MP) for efficient data sharing in P2P Networks using tokenizer method is proposed to resolve the problems of the larger P2P networks. The availability of data is first measured by the tokenizer using Dynamic Hypercube Organization. By applying Dynamic Hypercube Organization, that efficiently coordinates and assists the peers in P2P network ensuring data availability at many locations. Each data in peer is then assigned with valid ID by the tokenizer using Sequential Self-Organizing (SSO) ID generation model. This ensures data sharing with other nodes in large P2P network at minimum time interval which is obtained through proximity of data availability. To validate the framework HS-MP, the performance is evaluated using traffic traces collected from data sharing applications. Simulations conducting using Network simulator-2 show that the proposed framework outperforms the conventional streaming models. The performance of the proposed system is analyzed using energy consumption, average latency and average data availability rate with respect to the number of peer nodes, data size, amount of data shared and execution time. The proposed method reduces the energy consumption 43.35% to transpose traffic, 35.29% to bitrev traffic and 25% to bitcomp traffic patterns. |
Databáze: | OpenAIRE |
Externí odkaz: |