The bio-chemically selective interaction of hydrogenated and oxidized ultra-small nanodiamonds with proteins and cells
Autor: | Martin Hubálek, Tereza Belinova, Anna Fucikova, Stepan Stehlik, Bohuslav Rezek, Marie Hubalek Kalbacova, Iva Machova |
---|---|
Rok vydání: | 2020 |
Předmět: |
chemistry.chemical_classification
Biomolecule Nanoparticle Protein Corona 02 engineering and technology General Chemistry 010402 general chemistry 021001 nanoscience & nanotechnology Mass spectrometry 01 natural sciences 0104 chemical sciences Protein–protein interaction Cell membrane medicine.anatomical_structure chemistry medicine Biophysics General Materials Science 0210 nano-technology Cytotoxicity Quantitative analysis (chemistry) |
Zdroj: | Carbon. 162:650-661 |
ISSN: | 0008-6223 |
DOI: | 10.1016/j.carbon.2020.02.061 |
Popis: | Ultra-small nanoparticles of a size smaller than or comparable to cell membrane pores (1–5 nm) offer significant potential in the field of biomedicine. This study presents a systematic in vitro investigation of fundamental bio-chemical interactions of such ultra-small hydrogenated and oxidized detonation nanodiamonds (DNDs) with biomolecules and human cells. We apply mass spectrometry methods (LC-MS/MS) for the qualitative and quantitative analysis of the protein corona as a function of the surface chemistry and size of DNDs. We observe that protein interactions with DNDs are more related to their surface chemistry (H/O-termination) rather than size. Bioinformatics characterization of the identified proteins points to the strong influence of electrostatic interaction between proteins and DNDs depending on their termination. Such specific interaction leads to formation of different protein corona on 2 nm DNDs, which influences also interaction with cells including different level of cytotoxicity. |
Databáze: | OpenAIRE |
Externí odkaz: |