Hardy—Steklov operators and Sobolev-type embedding inequalities
Autor: | E. P. Ushakova, M. G. Nasyrova |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Mathematics::Functional Analysis 010102 general mathematics Type (model theory) Absolute continuity 01 natural sciences Operator space Sobolev space Mathematics (miscellaneous) Operator (computer programming) 0103 physical sciences Embedding 010307 mathematical physics 0101 mathematics Lp space Mathematics Variable (mathematics) |
Zdroj: | Proceedings of the Steklov Institute of Mathematics. 293:228-254 |
ISSN: | 1531-8605 0081-5438 |
DOI: | 10.1134/s0081543816040179 |
Popis: | We characterize weighted inequalities corresponding to the embedding of a class of absolutely continuous functions into a fractional-order Sobolev space. As auxiliary results of the paper, which are also of independent interest, we obtain several new types of necessary and sufficient conditions for the boundedness of the Hardy–Steklov operator (integral operator with two variable limits) in weighted Lebesgue spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |