Susceptibility-induced internal gradients reveal axon morphology and cause anisotropic effects in the dMRI signal

Autor: S. Winther, H. Lundell, J. Rafael-Patiño, M. Andersson, J-P. Thiran, T. B. Dyrby
Rok vydání: 2023
DOI: 10.1101/2023.05.01.538981
Popis: Diffusion-weighted MRI is our most promising method for estimating microscopic tissue morphology in vivo. The signal acquisition is based on scanner-generatedexternal magnetic gradients. However, it will also be affected by susceptibility-inducedinternal magnetic gradients caused by interaction between the tissue and the static magnetic field of the scanner. With 3D in silico experiments, we show how internal gradients cause morphology-, compartment-, and orientation-dependence of spin-echo and pulsed-gradient spin-echo experiments in myelinated axons. These effects are unseen in previous 2D modelling. For an ex vivo monkey brain, we observe the orientation-dependency generated only when including non-circular cross-sections in the in silico morphological configurations, and find orientation-dependent deviation of up to 17% for diffusion tensor metrics. Our findings underline the importance of accounting for realistic 3D axon morphology in modelling. Interestingly, the morphology-specific orientation-dependency trends show potential for a novel sensitivity to morphology, which is not attainable by the theoretical diffusion-weighted MRI signal itself.
Databáze: OpenAIRE