Regularity results for the solutions of a non-local model of traffic flow
Autor: | Paola Goatin, Florent Berthelin |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Applied Mathematics Traffic model Non local 01 natural sciences Convolution 010101 applied mathematics Sobolev space Microscopic traffic flow model Kernel (image processing) Product (mathematics) Convergence (routing) Discrete Mathematics and Combinatorics 0101 mathematics Analysis Mathematics |
Zdroj: | Discrete & Continuous Dynamical Systems - A. 39:3197-3213 |
ISSN: | 1553-5231 |
DOI: | 10.3934/dcds.2019132 |
Popis: | We consider a non-local traffic model involving a convolution product. Unlike other studies, the considered kernel is discontinuous on R. We prove Sobolev estimates and prove the convergence of approximate solutions solving a viscous and regularized non-local equation. It leads to weak, $C([0,T],L^2(\R))$, and smooth, $W^{2,2N}([0,T]\times\R)$, solutions for the non-local traffic model. |
Databáze: | OpenAIRE |
Externí odkaz: |