Optimal stable Ornstein–Uhlenbeck regression
Autor: | Hiroki Masuda |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Japanese Journal of Statistics and Data Science. 6:573-605 |
ISSN: | 2520-8764 2520-8756 |
DOI: | 10.1007/s42081-023-00197-z |
Popis: | We prove asymptotically efficient inference results concerning an Ornstein–Uhlenbeck regression model driven by a non-Gaussian stable Lévy process, where the output process is observed at high frequency over a fixed period. The local asymptotics of non-ergodic type for the likelihood function is presented, followed by a way to construct an asymptotically efficient estimator through a suboptimal, yet very simple preliminary estimator. |
Databáze: | OpenAIRE |
Externí odkaz: |