Spontaneous and Fungicide-Induced Genomic Variation in Sclerotinia sclerotiorum
Autor: | Sydney E. Everhart, Rebecca Higgins, Zhian N. Kamvar, B. Sajeewa Amaradasa, Nikita Gambhir |
---|---|
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
Genetics Genome instability 0303 health sciences Mutation rate Sclerotinia sclerotiorum Single-nucleotide polymorphism Plant Science Biology biology.organism_classification 01 natural sciences Genome Fungicide 03 medical and health sciences Copy-number variation Mutation frequency Agronomy and Crop Science 030304 developmental biology 010606 plant biology & botany |
Zdroj: | Phytopathology®. 111:160-169 |
ISSN: | 1943-7684 0031-949X |
DOI: | 10.1094/phyto-10-20-0471-fi |
Popis: | Stress from exposure to sublethal fungicide doses may cause genomic instability in fungal plant pathogens, which may accelerate the emergence of fungicide resistance or other adaptive traits. In a previous study, five strains of Sclerotinia sclerotiorum were exposed to sublethal doses of four fungicides with different modes of action, and genotyping showed that such exposure induced mutations. The goal of the present study was to characterize genome-wide mutations in response to sublethal fungicide stress in S. sclerotiorum and study the effect of genomic background on the mutational repertoire. The objectives were to determine the effect of sublethal dose exposure and genomic background on mutation frequency/type, distribution of mutations, and fitness costs. Fifty-five S. sclerotiorum genomes were sequenced and aligned to the reference genome. Variants were called and quality filtered to obtain high confidence calls for single nucleotide polymorphisms (SNPs), insertions/deletions (INDELs), copy number variants, and transposable element (TE) insertions. Results suggest that sublethal fungicide exposure significantly increased the frequency of INDELs in two strains from one genomic background (P value ≤ 0.05), while TE insertions were generally repressed for all genomic backgrounds and under all fungicide exposures. The frequency and/or distribution of SNPs, INDELs, and TE insertions varied with genomic background. A propensity for large duplications on chromosome 7 and aneuploidy of this chromosome were observed in the S. sclerotiorum genome. Mutation accumulation did not significantly affect the overall in planta strain aggressiveness (P value > 0.05). Understanding factors that affect pathogen mutation rates can inform disease management strategies that delay resistance evolution. |
Databáze: | OpenAIRE |
Externí odkaz: |