Popis: |
A/Ci curves are an important gas-exchange-based approach to understanding the regulation of photosynthesis, describing the response of net CO2 assimilation (A) to leaf internal concentration of CO2 (Ci). Low stomatal conductance species pose a challenge to the measurement of A/Ci curves by reducing the signal-to-noise ratio of gas exchange measures. Additionally, the stomatal attenuation effect of elevated ambient CO2 leads to further reduction of conductance and may lead to erroneous interpretation of high Ci responses of A. Rapid A/Ci response (RACiR) curves offer a potential practice to develop A/Ci curves faster than the stomatal closure response to elevated CO2. We used the moderately low conductance Citrus to compare traditional steady state (SS) A/Ci curves with RACiR curves. SS curves failed more often than RACiR curves. Overall parameter estimates were the same between SS and RACiR curves. When low stomatal conductance values were removed, triose-phosphate utilization (TPU) limitation estimates increased. Overall RACiR stomatal conductance values began and remained higher than SS values. Based on the comparable resulting parameter estimates, higher likelihood of success and reduced measurement time, we propose RACiR as a valuable tool to measure A/Ci responses in low conductance species. |