Bipartite Independent Number and Hamilton-Biconnectedness of Bipartite Graphs

Autor: Binlong Li
Rok vydání: 2020
Předmět:
Zdroj: Graphs and Combinatorics. 36:1639-1653
ISSN: 1435-5914
0911-0119
DOI: 10.1007/s00373-020-02211-7
Popis: Let G be a balanced bipartite graph with bipartite sets X, Y. We say that G is Hamilton-biconnected if there is a Hamilton path connecting any vertex in X and any vertex in Y. We define the bipartite independent number $$\alpha ^o_B(G)$$ to be the maximum integer $$\alpha $$ such that for any integer partition $$\alpha =s+t$$ , G has an independent set formed by s vertices in X and t vertices in Y. In this paper we show that if $$\alpha ^o_B(G)\le \delta (G)$$ then G is Hamilton-biconnected, unless G has a special construction.
Databáze: OpenAIRE