Bipartite Independent Number and Hamilton-Biconnectedness of Bipartite Graphs
Autor: | Binlong Li |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Graphs and Combinatorics. 36:1639-1653 |
ISSN: | 1435-5914 0911-0119 |
DOI: | 10.1007/s00373-020-02211-7 |
Popis: | Let G be a balanced bipartite graph with bipartite sets X, Y. We say that G is Hamilton-biconnected if there is a Hamilton path connecting any vertex in X and any vertex in Y. We define the bipartite independent number $$\alpha ^o_B(G)$$ to be the maximum integer $$\alpha $$ such that for any integer partition $$\alpha =s+t$$ , G has an independent set formed by s vertices in X and t vertices in Y. In this paper we show that if $$\alpha ^o_B(G)\le \delta (G)$$ then G is Hamilton-biconnected, unless G has a special construction. |
Databáze: | OpenAIRE |
Externí odkaz: |