Coproduct for Yangians of affine Kac–Moody algebras
Autor: | Nicolas Guay, Curtis Wendlandt, Hiraku Nakajima |
---|---|
Rok vydání: | 2018 |
Předmět: |
Algebra homomorphism
Quantum affine algebra General Mathematics Mathematics::Rings and Algebras 010102 general mathematics Coproduct 01 natural sciences Algebra Filtered algebra High Energy Physics::Theory Affine representation Mathematics::Quantum Algebra 0103 physical sciences Cellular algebra 010307 mathematical physics Affine transformation 0101 mathematics Yangian Mathematics::Representation Theory Mathematics |
Zdroj: | Advances in Mathematics. 338:865-911 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2018.09.013 |
Popis: | Given an affine Kac–Moody algebra, we explain how to construct a coproduct on its associated Yangian. In order to prove that this coproduct is an algebra homomorphism, we obtain, in the first half of this paper, a minimalistic presentation of the Yangian when the Kac–Moody algebra is, more generally, symmetrizable. |
Databáze: | OpenAIRE |
Externí odkaz: |