Popis: |
When different semiconductors are integrated into hetero-junctions, native oxides generate interfacial defects and cause electronic recombination. Two state-of-the-art integration methods, hetero-epitaxy and Direct Wafer Bonding (DWB), require temperatures > 400°C to reduce native oxides. However, T > 400°C leads to defects due to lattice and thermal expansion mismatches. In this work, DWB temperatures are lowered via Nano-Bonding™ (NB) at T ≤ 220°C and P ≤ 60 kPa (9 psi). NB uses Surface Energy Engineering (SEE) at 300K to modify surface energies (γT) to far-from-equilibrium states, so cross-bonding occurs with little thermal activation and compression. SEE modifies γT and hydro-affinity (HA) via chemical etching, planarization, and termination that are optimized to yield 2-D Precursor Phases (2D-PP) metastable in ambient air and highly planar at the nano- and micro- scales. Complementary 2D-PPs nano-contact via carrier exchange from donor 2D-PP surfaces to acceptor ones. Here, NB models and SEE are applied to the DWB of GaAs to Si for photo-voltaics. SEE modifies (1) the initial γT0 and HA0 measured via Three Liquid Contact Angle Analysis, (2) the oxygen coverage measured via High Resolution Ion Beam Analysis, and (3) the oxidation states measured via X-Ray Photoelectron Spectroscopy. SEE etches hydrophobic GaAs oxides with γT = 33.4 ± 1 mJ/m2, and terminates GaAs (100) with H+, rendering GaAs hydrophilic with γT = 60 ± 2 mJ/m2. Similarly, hydrophilic Si native oxides are etched into hydrophobic SiO4H2. H+- GaAs nano-bonds reproducibly to Si, as measured via Surface Acoustic Wave Microscopy, validating the NB model and SEE design. |