Regression kriging to improve basal area and growing stock volume estimation based on remotely sensed data, terrain indices and forest inventory of black pine forests

Autor: Ferhat Bolat, İlker Ercanli, Alkan Günlü, Muammer Şenyurt, Sinan Bulut
Rok vydání: 2020
Předmět:
Zdroj: New Zealand Journal of Forestry Science. 50
ISSN: 1179-5395
DOI: 10.33494/nzjfs502020x49x
Popis: Background: The use of satellite imagery to quantify forest metrics has become popular because of the high costs associated with the collection of data in the field.Methods: Multiple linear regression (MLR) and regression kriging (RK) techniques were used for the spatial interpolation of basal area (G) and growing stock volume (GSV) based on Landsat 8 and Sentinel-2. The performance of the models was tested using the repeated k-fold cross-validation method.Results: The prediction accuracy of G and GSV was strongly related to forest vegetation structure and spatial dependency. The nugget value of semivariograms suggested a moderately spatial dependence for both variables (nugget/sill ratio approx. 70%). Landsat 8 and Sentinel-2 based RK explained approximately 52% of the total variance in G and GSV. Root-mean-square errors were 7.84 m2 ha-1 and 49.68 m3 ha-1 for G and GSV, respectively.Conclusions: The diversity of stand structure particularly at the poorer sites was considered the principal factor decreasing the prediction quality of G and GSV by RK.
Databáze: OpenAIRE