Discrete Lagrange-d’Alembert-Poincaré equations for Euler’s disk

Autor: Viviana Alejandra Díaz, David Martín de Diego, Cédric M. Campos, Hernán Cendra
Rok vydání: 2011
Předmět:
Zdroj: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 106:225-234
ISSN: 1579-1505
1578-7303
DOI: 10.1007/s13398-011-0053-3
Popis: Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincare equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincare equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.
Databáze: OpenAIRE