Ontogenetic shift in diet of a large elapid snake is facilitated by allometric change in skull morphology

Autor: Matthew Brenton Patterson, Ashleigh K Wolfe, Patricia A Fleming, Philip W Bateman, Meg Martin, Emma Sherratt, Natalie M Warburton
Rok vydání: 2021
Popis: As snakes are limbless, gape-limited predators, their skull is the main feeding structure involved in prey handling, manipulation and feeding. Ontogenetic changes in prey type and size are likely to be associated with distinct morphological changes in the skull during growth. We investigated ontogenetic variation in diet from stomach contents of n = 161 dugite specimens (Pseudonaja affinis, Elapidae) representing the full range of body size for the species, and skull morphology of 46 specimens (range 0.25–1.64 m snout-vent-length; SVL). We hypothesised that changes in prey type throughout postnatal ontogeny would coincide with distinct changes in skull shape. Dugites demonstrate a distinct size-related shift in diet: the smallest individuals ate autotomised reptile tails, medium-sized individuals predominantly ate small reptiles (as snakes grew larger there was an increased likelihood of feeding on reptiles head-first), and the largest individuals (> 0.8 m SVL) ate mammals and large reptiles. Morphometric analysis revealed that ~ 40% of the variation in skull shape was associated with body size (SVL). Through ontogeny, skulls changed from a smooth, bulbous cranium with relatively small trophic bones (upper and lower jaws and their attachments), to more rugous bones (as an adaption for muscle attachment) and relatively longer trophic bones that would extend gape. Individual shape variation in trophic bone dimensions was greater in larger adults and this likely reflects natural plasticity of individuals feeding on different prey sizes/types. Rather than a distinct morphological shift with diet, the ontogenetic changes were consistent, but positive allometry of individual trophic bones resulted in disproportionate growth of the skull, reflected in increased gape size and mobility of jaw bones in adults to aid the ingestion of larger prey and improve manipulation and processing ability. These results indicate that allometric scaling is an important mechanism by which snakes can change their dietary niche.
Databáze: OpenAIRE