Comparison of Results Obtained Using Brain–Computer Interface Classifiers in a Motor Imagery Recognition Task

Autor: S. N. Agapov, V. V. Oganesyan, V. A. Bulanov, E. V. Biryukova
Rok vydání: 2018
Předmět:
Zdroj: Neuroscience and Behavioral Physiology. 48:1164-1168
ISSN: 1573-899X
0097-0549
DOI: 10.1007/s11055-018-0681-6
Popis: This article compares a wide set of data classification methods used for creating brain–computer interfaces based on the recognition of EEG patterns during motor imagery of the hand. The GBM (gradient boosting models) classifier was found to work better than other classifiers using the dataset provided.
Databáze: OpenAIRE