Spectral properties of certain Moran measures with consecutive and collinear digit sets

Autor: Xin-Han Dong, Yu-Min Li, Hai-Hua Wu
Rok vydání: 2020
Předmět:
Zdroj: Forum Mathematicum. 32:683-692
ISSN: 1435-5337
0933-7741
DOI: 10.1515/forum-2019-0248
Popis: Let the 2 × 2 {2\times 2} expanding matrix R k {R_{k}} be an integer Jordan matrix, i.e., R k = diag ⁡ ( r k , s k ) {R_{k}=\operatorname{diag}(r_{k},s_{k})} or R k = J ⁢ ( p k ) {R_{k}=J(p_{k})} , and let D k = { 0 , 1 , … , q k - 1 } ⁢ v {D_{k}=\{0,1,\ldots,q_{k}-1\}v} with v = ( 1 , 1 ) T {v=(1,1)^{T}} and 2 ≤ q k ≤ p k , r k , s k {2\leq q_{k}\leq p_{k},r_{k},s_{k}} for each natural number k. We show that the sequence of Hadamard triples { ( R k , D k , C k ) } {\{(R_{k},D_{k},C_{k})\}} admits a spectrum of the associated Moran measure provided that lim inf k → ∞ ⁡ 2 ⁢ q k ⁢ ∥ R k - 1 ∥ < 1 {\liminf_{k\to\infty}2q_{k}\lVert R_{k}^{-1}\rVert .
Databáze: OpenAIRE