Mating, paper folding, and an endomorphism of ℙℂ²
Autor: | Volodymyr Nekrashevych |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Conformal Geometry and Dynamics of the American Mathematical Society. 20:303-358 |
ISSN: | 1088-4173 |
DOI: | 10.1090/ecgd/302 |
Popis: | We are studying topological properties of the Julia set of the map F ( z , p ) = ( ( 2 z p + 1 − 1 ) 2 , ( p − 1 p + 1 ) 2 ) F(z, p)=\left (\left (\frac {2z}{p+1}-1\right )^2, \left (\frac {p-1}{p+1}\right )^2\right ) of the complex projective plane P C 2 \mathbb {P}\mathbb {C}^2 to itself. We show a relation between this rational function and an uncountable family of “paper folding” plane filling curves. |
Databáze: | OpenAIRE |
Externí odkaz: |