Mating, paper folding, and an endomorphism of ℙℂ²

Autor: Volodymyr Nekrashevych
Rok vydání: 2016
Předmět:
Zdroj: Conformal Geometry and Dynamics of the American Mathematical Society. 20:303-358
ISSN: 1088-4173
DOI: 10.1090/ecgd/302
Popis: We are studying topological properties of the Julia set of the map F ( z , p ) = ( ( 2 z p + 1 − 1 ) 2 , ( p − 1 p + 1 ) 2 ) F(z, p)=\left (\left (\frac {2z}{p+1}-1\right )^2, \left (\frac {p-1}{p+1}\right )^2\right ) of the complex projective plane P C 2 \mathbb {P}\mathbb {C}^2 to itself. We show a relation between this rational function and an uncountable family of “paper folding” plane filling curves.
Databáze: OpenAIRE