The numerical semigroup of the integers which are bounded by a submonoid of N2

Autor: Aureliano M. Robles-Pérez, José Carlos Rosales
Rok vydání: 2014
Předmět:
Zdroj: Electronic Notes in Discrete Mathematics. 46:249-256
ISSN: 1571-0653
DOI: 10.1016/j.endm.2014.08.033
Popis: Let M be a submonoid of ( N 2 , + ) such that the set A ( M ) = { n ∈ N | a n b for some ( a , b ) ∈ M } is non-empty. Then A ( M ) ∪ { 0 } is a numerical semigroup. We will show that a numerical semigroup S can be obtained in this way if and only if { a + b − 1 , a + b + 1 } ⊆ S for all a , b ∈ S \ { 0 } . We will see that such numerical semigroups form a Frobenius variety and we will study it.
Databáze: OpenAIRE