The numerical semigroup of the integers which are bounded by a submonoid of N2
Autor: | Aureliano M. Robles-Pérez, José Carlos Rosales |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Electronic Notes in Discrete Mathematics. 46:249-256 |
ISSN: | 1571-0653 |
DOI: | 10.1016/j.endm.2014.08.033 |
Popis: | Let M be a submonoid of ( N 2 , + ) such that the set A ( M ) = { n ∈ N | a n b for some ( a , b ) ∈ M } is non-empty. Then A ( M ) ∪ { 0 } is a numerical semigroup. We will show that a numerical semigroup S can be obtained in this way if and only if { a + b − 1 , a + b + 1 } ⊆ S for all a , b ∈ S \ { 0 } . We will see that such numerical semigroups form a Frobenius variety and we will study it. |
Databáze: | OpenAIRE |
Externí odkaz: |