Families of optimal multipoint methods for solving nonlinear equations: A survey
Autor: | S Miodrag Petkovic, D Ljiljana Petkovic |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Applicable Analysis and Discrete Mathematics. 4:1-22 |
ISSN: | 2406-100X 1452-8630 |
DOI: | 10.2298/aadm100217015p |
Popis: | Multipoint iterative root-solvers belong to the class of the most powerful methods for solving nonlinear equations since they overcome theoretical limits of one-point methods concerning the convergence order and computational efficiency. Although the construction of these methods has occurred in the 1960s, their rapid development have started in the first decade of the 21-st century. The most important class of multipoint methods are optimal methods which attain the convergence order 2n using n + 1 function evaluations per iteration. In this paper we give a review of optimal multipoint methods of the order four (n = 2), eight (n = 3) and higher (n > 3), some of which being proposed by the authors. All of them possess as high as possible computational efficiency in the sense of the Kung-Traub hypothesis (1974). Numerical examples are included to demonstrate a very fast convergence of the presented optimal multipoint methods. |
Databáze: | OpenAIRE |
Externí odkaz: |