Modeling Stream Shade: Riparian Buffer Height and Density as Important as Buffer Width1

Autor: David R. DeWalle
Rok vydání: 2010
Předmět:
Zdroj: JAWRA Journal of the American Water Resources Association. 46:323-333
ISSN: 1093-474X
1752-1688
DOI: 10.1111/j.1752-1688.2010.00423.x
Popis: DeWalle, David R., 2010. Modeling Stream Shade: Riparian Buffer Height and Density as Important as Buffer Width. Journal of the American Water Resources Association (JAWRA) 46(2):323-333. DOI: 10.1111/j.1752-1688.2010.00423.x Abstract: A theoretical model was developed to explore impacts of varying buffer zone characteristics on shading of small streams using a path-length form of Beer’s law to represent the transmission of direct beam solar radiation through vegetation. Impacts of varying buffer zone height, width, and radiation extinction coefficients (surrogate for buffer density) on shading were determined for E-W and N-S stream azimuths in infinitely long stream sections at 40°N on the summer solstice. Increases in buffer width produced little additional shading beyond buffer widths of 6-7 m for E-W streams due to shifts in solar beam pathway from the sides to the tops of the buffers. Buffers on the north bank of E-W streams produced 30% of daily shade, while the south-bank buffer produced 70% of total daily shade. For N-S streams an optimum buffer width was less-clearly defined, but a buffer width of about 18-20 m produced about 85-90% of total predicted shade. The model results supported past field studies showing buffer widths of 9-11 m were sufficient for stream temperature control. Regardless of stream azimuth, increases in buffer height and extinction coefficient (buffer density) were found to substantially increase shading up to the maximum tree height and stand density likely encountered in the field. Model results suggest that at least 80% shade on small streams up to 6-m wide can be achieved in mid-latitudes with relatively narrow 12-m wide buffers, regardless of stream azimuth, as long as buffers are tall (≈30 m) and dense (leaf area index ≈6). Although wide buffers may be preferred to provide other benefits, results suggest that increasing buffer widths beyond about 12 m will have a limited effect on stream shade at mid-latitudes and that greater emphasis should be placed on the creation of dense, tall buffers to maximize stream shading.
Databáze: OpenAIRE