Fundamentals for symplectic % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqipC0xg9qqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvga % iyaacqWFaeFqaaa!45A2! $$ \mathcal{A} $$ -modules. Affine Darboux theorem

Autor: Patrice P. Ntumba, Anastasios Mallios
Rok vydání: 2009
Předmět:
Zdroj: Rendiconti del Circolo Matematico di Palermo. 58:169-198
ISSN: 1973-4409
0009-725X
Popis: In his [9–11], the first author shows that the sheaf-theoreti-cally based Abstract Differential Geometry incorporates and generalizes classical differential geometry. Here, we undertake to explore the implications of Abstract Differential Geometry to classical symplectic geometry. The full investigation will be presented elsewhere.
Databáze: OpenAIRE