Universal inequalities for eigenvalues of a system of elliptic equations of the drifting Laplacian

Autor: Rosane Gomes Pereira, Adail de Castro Cavalheiro, Levi Adriano
Rok vydání: 2016
Předmět:
Zdroj: Monatshefte für Mathematik. 181:797-820
ISSN: 1436-5081
0026-9255
DOI: 10.1007/s00605-015-0875-8
Popis: Let \(\Omega \) be a bounded domain in a n-dimensional Euclidean space \(\mathbb {R}^{n}\). We study eigenvalues of an eigenvalue problem of a system of elliptic equations of the drifting Laplacian $$\begin{aligned} \left\{ \begin{array}{ll} \mathbb {L_{\phi }}\mathbf{{u}} + \alpha (\nabla (\mathrm {div}{} \mathbf{{u}}) - \nabla \phi \mathrm {div}{} \mathbf{{u}})= -\bar{\sigma }\mathbf{{u}}, &{} \hbox {in} \,\Omega ; \\ \mathbf{{u}}|_{\,\partial \Omega }=0. \end{array} \right. \end{aligned}$$ Estimates for eigenvalues of the above eigenvalue problem are obtained. Furthermore, a universal inequality for lower order eigenvalues of the problem is also derived. Finally, we prove an universal inequality type Ashbaugh and Benguria for the drifting Laplacian on Riemannian manifold immersed in an unit sphere or a projective space.
Databáze: OpenAIRE