Some Remarks on the Algebraic Sum of Ideals and Riesz Subspaces

Autor: Witold Wnuk
Rok vydání: 2013
Předmět:
Zdroj: Canadian Mathematical Bulletin. 56:434-441
ISSN: 1496-4287
0008-4395
DOI: 10.4153/cmb-2011-151-0
Popis: Following ideas used by Drewnowski and Wilansky we prove that if I is an infinite dimensional and infinite codimensional closed ideal in a complete metrizable locally solid Riesz space and I does not contain any order copy of ℝN then there exists a closed, separable, discrete Riesz subspace G such that the topology induced on G is Lebesgue, I ∩ G = {0}, and I + G is not closed.
Databáze: OpenAIRE