Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency
Autor: | Aldo Steinfeld, Philipp Furler, Michael Takacs, Daniel Marxer |
---|---|
Rok vydání: | 2017 |
Předmět: |
Renewable Energy
Sustainability and the Environment business.industry Chemistry 020209 energy Energy balance Flux Nanotechnology 02 engineering and technology 7. Clean energy Pollution Redox Nuclear Energy and Engineering 13. Climate action 0202 electrical engineering electronic engineering information engineering Radiative transfer Environmental Chemistry Process engineering business Selectivity Porosity Absorption (electromagnetic radiation) Efficient energy use |
Zdroj: | Energy & Environmental Science. 10:1142-1149 |
ISSN: | 1754-5706 1754-5692 |
DOI: | 10.1039/c6ee03776c |
Popis: | Developing solar technologies for converting CO2 into fuels has become a great energy challenge, as it closes the anthropogenic carbon cycle and leads to the production of sustainable transportation fuels on a global scale. However, the low mass conversion, poor selectivity, and/or low energy efficiency of current approaches have hindered their industrial implementation. Here, we experimentally demonstrate the solar-driven thermochemical splitting of CO2 into separate streams of CO and O2 with 100% selectivity, 83% molar conversion, and 5.25% solar-to-fuel energy efficiency. This benchmark performance was accomplished using a 4 kW solar reactor featuring a reticulated porous structure, made of ceria, directly exposed to 3000× flux irradiation and undergoing redox cycling via temperature/pressure-swing operation. The dual-scale interconnected porosity (mm and μm-sized pores) of the ceria structure provided volumetric radiative absorption and enhanced heat/mass transport for rapid redox kinetics, while 500 consecutive redox cycles further validated material stability and structure robustness. A detailed energy balance elucidates viable paths for achieving higher efficiencies and for large-scale industrial implementation using an array of modular solar reactors integrated into the established solar concentrating infrastructure. |
Databáze: | OpenAIRE |
Externí odkaz: |