Infrared-Visible Image Fusion Based on Convolutional Neural Networks (CNN)

Autor: Tao Hu, Zhijun Liu, Xianyi Ren, Fanyang Meng, Changwei Wang
Rok vydání: 2018
Předmět:
Zdroj: Lecture Notes in Computer Science ISBN: 9783030026974
IScIDE
DOI: 10.1007/978-3-030-02698-1_26
Popis: Image fusion is a process of combing multiple images of the same scene into a single image with the aim of preserving the full content information and retaining the important features from each of the original images. In this paper, a novel image fusion method based on Convolutional Neural Networks (CNN) and saliency detection is proposed. Here, we use the image representations derived from CNN Network optimized for infrared-visible image fusion. Since the lower layers of the network can seize the exact value of the original image, and the high layers of the network can capture the high-level content in terms of objects and their arrangement in the input image, we exploit more low-layer features of visible image and more high-layer features of infrared image in the fusion. And during the fusion procedure, the infrared target of an infrared image is effectively highlighted using saliency detection method and only the salient information of the infrared image will be fused. The method aimed to preserve the abundant detail information from visible image as much as possible, meanwhile preserve the salient information in the infrared image. Experimental results show that the proposed fusion method is rather promising.
Databáze: OpenAIRE