The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type

Autor: Tie Zhu Zhang, Shuhua Zhang
Rok vydání: 2015
Předmět:
Zdroj: Applications of Mathematics. 60:573-596
ISSN: 1572-9109
0862-7940
DOI: 10.1007/s10492-015-0112-8
Popis: We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of C-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set S, the gradient approximation possesses the superconvergence: $${\max _{P \in S}}|(\nabla u - \overline \nabla {u_h})(P)| = O({h^2})|\ln h{|^{3/2}}$$ , where $$\overline \nabla $$ denotes the average gradient on elements containing vertex P. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the H 1-norm and establish an asymptotically exact a posteriori error estimator for the error ‖u − u h ‖1.
Databáze: OpenAIRE