Quantum gl1|1 and tangle Floer homology
Autor: | Alexander P. Ellis, Vera Vértesi, Ina Petkova |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Topological quantum field theory General Mathematics 010102 general mathematics Scalar (mathematics) Mathematics::Geometric Topology 01 natural sciences Tangle Tensor product Floer homology Mathematics::K-Theory and Homology Mathematics::Category Theory Mathematics::Quantum Algebra 0103 physical sciences Bimodule Grothendieck group Homomorphism 010307 mathematical physics 0101 mathematics Mathematics |
Zdroj: | Advances in Mathematics. 350:130-189 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2019.04.023 |
Popis: | We identify the Grothendieck group of the tangle Floer dg algebra with a tensor product of certain U q ( gl 1 | 1 ) representations. Under this identification, up to a scalar factor, the map on the Grothendieck group induced by the tangle Floer dg bimodule associated to a tangle agrees with the Reshetikhin-Turaev homomorphism for that tangle. We also introduce dg bimodules which act on the Grothendieck group as the generators E and F of U q ( gl 1 | 1 ) . |
Databáze: | OpenAIRE |
Externí odkaz: |