Hyperbranched rolling circle amplification as a novel method for rapid and sensitive detection of Amphidinium carterae

Autor: Shibei Zhang, Panpan Cai, Chunyun Zhang, Guofu Chen, Changlu Guo, Yuanyuan Wang, Dou Ding Lu
Rok vydání: 2015
Předmět:
Zdroj: Harmful Algae. 47:66-74
ISSN: 1568-9883
DOI: 10.1016/j.hal.2015.05.012
Popis: High quality of coastal water is critical to marine ecosystems, marine fisheries, public health, and aquatic environment. Specially, bio-toxin derived from toxic microalgae is currently threatening many coastal countries. Therefore, development of rapid and sensitive methods for the detection of toxin-producing microalgae is necessary for warning of water quality. In this paper, we established a novel method for rapid and sensitive detection of Amphidinium carterae by hyperbranched rolling circle amplification (HRCA). The partial large subunit rDNA (LSU D1–D2) of A. carterae was sequenced to design species-specific padlock probe (PLP). The PLP-coupled with two amplification primers were employed for HRCA. The optimized HRCA conditions were as follows: padlock concentration, 20 pM; ligation temperature, 65 °C; ligation time, 15 min; amplification temperature, 61 °C; and amplification time, 15 min. The developed HRCA was confirmed to be specific for A. carterae by tests with other algae. The sensitivity of HRCA was 100-fold higher than regular PCR, exhibiting a detection limit of 1 fg/μL representing 283 copies for the recombinant plasmid containing the target LSU D1–D2, and 1 cell for target species. Finally, a simplified protocol was applied to the simulated field and environmental materials, and exhibited a good performance. The whole detection could be completed within 1.5 h, displaying a repeated detection limit of 1 cell. The positive HRCA results could be visualized through coloration reaction by adding the fluorescent dye SYBR Green I to the amplification products. The HRCA provides a useful tool to quickly screen large sample sets for A. carterae, as well as other toxic species.
Databáze: OpenAIRE