Experimental Investigation of Liquid Jet Breakup in a Cross Flow of a Swirling Air Stream
Autor: | Tushar Sikroria, Saadat Syed, Abhijit Kushari, Jeffery A. Lovett |
---|---|
Rok vydání: | 2014 |
Předmět: |
Physics
Jet (fluid) Mechanical Engineering Nuclear Theory Airflow Isothermal flow Energy Engineering and Power Technology Aerospace Engineering Mechanics Breakup Open-channel flow Physics::Fluid Dynamics symbols.namesake Fuel Technology Classical mechanics Nuclear Energy and Engineering Mach number symbols Two-phase flow Nuclear Experiment Shear flow |
Zdroj: | Journal of Engineering for Gas Turbines and Power. 136 |
ISSN: | 1528-8919 0742-4795 |
DOI: | 10.1115/1.4026244 |
Popis: | This paper presents the results of an experimental investigation of liquid jet breakup in a cross-flow of air under the influence of swirl (swirl numbers 0 and 0.2) at a fixed air flow Mach No. 0.12 (typical gas turbine conditions). The experiments have been conducted for various liquid to air momentum flux ratios (q) in the range of 1 to 25. High speed (@ 500 fps) images of the jet breakup process are captured and those images are processed using MATLAB to obtain the variation of breakup length and penetration height with momentum flux ratio. Using the high speed images, an attempt has been made to understand the physics of the jet breakup process by identification of breakup modes — bag breakup, column breakup, shear breakup and surface breakup. The results show unique breakup and penetration behavior which departs from the continuous correlations typically used. Furthermore, the images show a substantial spatial fluctuation of the emerging jet resulting in a wavy nature related to effects of instability waves. The results with 15° swirl show reduced breakup length and penetration related to the non-uniform distribution of velocity that offers enhanced fuel atomization in swirling fuel nozzles.Copyright © 2013 by ASME |
Databáze: | OpenAIRE |
Externí odkaz: |