Automatic Segmentation of Brain Structures for Treatment Planning Optimization and Target Volume Definition
Autor: | Dimos Baltas, Thomas Bortfeld, Marco Langhans, Tobias Fechter, Harald Binder |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data ISBN: 9783030718268 MICCAI (Challenges) |
DOI: | 10.1007/978-3-030-71827-5_5 |
Popis: | The MICCAI Challenge 2020 “Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Image” was about segmenting brain structures automatically for further use in the definition of the Clinical Target Volume (CTV) of glioblastoma patients and treatment planning optimization in radiation therapy. This paper describes the methods of the team “FREI”. A 3D U-Net style deep learning network was used to achieve human-like segmentation accuracy for most of the structures within seconds. |
Databáze: | OpenAIRE |
Externí odkaz: |