Slanted Images: Measuring Nonverbal Media Bias During the 2016 Election

Autor: Levi Boxell
Rok vydání: 2021
Předmět:
Zdroj: SSRN Electronic Journal.
ISSN: 1556-5068
DOI: 10.2139/ssrn.3837521
Popis: Using nearly one million images from the front page of news websites during the 2016 election period, I show how computer vision techniques can identify the faces of politicians across the images and measure the nonverbal emotional content expressed on each face. I find strong evidence for nonverbal media bias in both the choice of which politicians to cover and the emotional content of the images used. Liberal websites devoted 40 (14) percent of their visual political coverage to Donald Trump (Hillary Clinton) compared to 30 (25) percent among conservative outlets. Websites whose consumers are politically aligned with a candidate also portray the candidate with more positive emotions and less negative emotions than non-aligned websites. Moreover, I find evidence for important dynamics across the election cycle, with the partisan gap in who to cover increasing significantly after the primaries.
Databáze: OpenAIRE