In Situ Generation of the Surface Oxygen Vacancies in a Copper–Ceria Catalyst for the Water–Gas Shift Reaction
Autor: | Chun-Jiang Jia, Wen-Zhu Yu, Wei-Wei Wang, Mei-Yao Wu |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
Oxide Sintering Nanoparticle chemistry.chemical_element Surfaces and Interfaces Condensed Matter Physics Copper Dissociation (chemistry) Water-gas shift reaction Catalysis chemistry.chemical_compound Adsorption chemistry Chemical engineering Electrochemistry General Materials Science Spectroscopy |
Zdroj: | Langmuir. 37:10499-10509 |
ISSN: | 1520-5827 0743-7463 |
DOI: | 10.1021/acs.langmuir.1c01428 |
Popis: | The dissociation of H2O is a crucial aspect for the water-gas shift reaction, which often occurs on the vacancies of a reducible oxide support. However, the vacancies sometimes run off, thus inhibiting H2O dissociation. After high-temperature treatment, the ceria supports were lacking vacancies because of sintering. Unexpectedly, the in situ generation of surface oxygen vacancies was observed, ensuring the efficient dissociation of H2O. Due to the surface reconstruction of ceria nanorods, the copper species sustained were highly dispersed on the sintered support, on which CO was adsorbed efficiently to react with hydroxyls from H2O dissociation. In contrast, no surface reconstruction occurred in ceria nanoparticles, leading to the sintering of copper species. The sintered copper species were averse to adsorb CO, so the copper-ceria nanoparticle catalyst had poor reactivity even when surface oxygen vacancies could be generated in situ. |
Databáze: | OpenAIRE |
Externí odkaz: |