Improved minimal residual disease detection by targeted quantitative polymerase chain reaction inNucleophosmin 1type a mutated acute myeloid leukemia

Autor: Dana Dvorakova, Louise Pettersson, Gunnar Juliusson, Per Levéen, Mats Ehinger, Olof Axler
Rok vydání: 2016
Předmět:
Zdroj: Genes, Chromosomes and Cancer. 55:750-766
ISSN: 1045-2257
DOI: 10.1002/gcc.22375
Popis: Multicolor flow cytometry (MFC) and real-time quantitative PCR (RQ-PCR) are important independent techniques to determine minimal residual disease (MRD) in acute myeloid leukemia (AML). MFC is the standard method, but may be unreliable. Therefore, MFC-based determination of MRD with an RQ-PCR-based approach targeting the nucleophosmin 1 (NPM1) type A mutation was set out to compare. Since most current NPM1 RQ-PCR MRD protocols suffer from clear definitions of quantifiability, we sought to define quantifiability in a reproducible and standardized manner. The limit of quantifiability of our RQ-PCR protocol for the NPM1 type A mutation varied between 0.002% and 0.04% residual leukemic cells depending on the features of the standard curve for each PCR experiment. The limit of detection was close to 0.001% leukemic cells. The limit of detection by MFC ranged from 0.01% to 1% depending on the phenotype of the leukemic cells as compared with non-leukemic bone marrow cells. Forty-five MRD samples from 15 patients using both NPM1 mutation specific RQ-PCR and MFC were analyzed. In 32 of the 45 samples (71%), an MRD-signal could be detected with RQ-PCR. A quantifiable NPM1 mutation signal was found in 15 samples (33%) (range 0.003%–2.6% leukemic cells). By contrast, only two follow-up samples (4%) showed residual leukemic cells (0.04% and 0.3%, respectively) by MFC. Thus, RQ-PCR of the NPM1 type A mutation was more sensitive and reliable than MFC for determination of MRD, which might have clinical implications. © 2016 Wiley Periodicals, Inc. (Less)
Databáze: OpenAIRE