Ru-Co-Mn trimetallic alloy nanocatalyst driving bifunctional redox electrocatalysis
Autor: | Jia Liu, Xiaodong Wan, Jiatao Zhang, Rongrong Pan, Shan Liu, Erhuan Zhang, Xiuming Zhang, Mengyao Su, Yuemei Li |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Science China Materials. 65:131-138 |
ISSN: | 2199-4501 2095-8226 |
DOI: | 10.1007/s40843-021-1732-1 |
Popis: | Water electrolysis is one of the most promising approaches for producing hydrogen. However, it has been hindered by the sluggishness of the anodic oxygen evolution reaction. In this work, we fabricated Ru-Co-Mn trimetallic alloy nanoparticles on N-doped carbon support (RuCoMn@NC) via the pyrolysis-adsorption-pyrolysis process using ZIF-67 as a precursor. The RuCoMn@NC catalyst exhibited excellent electrocatalytic performance for the hydrogen evolution reaction (HER) over a wide range of pH and glucose oxidation reaction in alkaline media. It showed exceptional HER activity in alkaline medium, superior to that of the commercial Pt/C catalyst (20 wt%), and good electrochemical stability. Further, a two-electrode alkaline electrolyzer pairing RuCoMn@NC as both cathode and anode was employed, and only a cell voltage of 1.63 V was required to attain a current density of 10 mA cm−2 in glucose electrolysis, which is about 270 mV lower than that in the overall water-splitting electrolyzer. This paper provides a promising method for developing efficiently bifunctional electrocatalysts driving redox electro-catalysis, and it would be beneficial to energy-saving electrolytic H2 production. |
Databáze: | OpenAIRE |
Externí odkaz: |