Extremal Problems for Convex Curves with a Given Self Chebyshev Radius
Autor: | Yulia Nikonorova, Vitor Balestro, Horst Martini, Yurii Nikonorov |
---|---|
Rok vydání: | 2021 |
Předmět: |
Applied Mathematics
010102 general mathematics Mathematical analysis Regular polygon Boundary (topology) Radius Computer Science::Computational Geometry 01 natural sciences Chebyshev filter 010101 applied mathematics Perimeter Mathematics (miscellaneous) Euclidean geometry Mathematics::Metric Geometry 0101 mathematics Mathematics |
Zdroj: | Results in Mathematics. 76 |
ISSN: | 1420-9012 1422-6383 |
Popis: | The paper is devoted to some extremal problems for convex curves and polygons in the Euclidean plane referring to the self Chebyshev radius. In particular, we determine the self Chebyshev radius for the boundary of an arbitrary triangle. Moreover, we derive the maximal possible perimeter for convex curves and boundaries of convex n-gons with a given self Chebyshev radius. |
Databáze: | OpenAIRE |
Externí odkaz: |