The Solvable Primitive Permutation Groups of Degree at Most 6560
Autor: | Bettina Eick, B. Höfling |
---|---|
Rok vydání: | 2003 |
Předmět: |
Discrete mathematics
General Mathematics Partial permutation Primitive permutation group Generalized permutation matrix Cyclic permutation Combinatorics Base (group theory) Conjugacy class Computational Theory and Mathematics Symmetric group ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Permutation graph Mathematics |
Zdroj: | LMS Journal of Computation and Mathematics. 6:29-39 |
ISSN: | 1461-1570 |
DOI: | 10.1112/s146115700000036x |
Popis: | The authors present an algorithm to construct conjugacy class representatives of the solvable primitive subgroups of Sd for a given degree d. Using this method, they determine the solvable primitive permutation groups of degree at most 6560 (that is, 38 – 1), up to conjugacy. |
Databáze: | OpenAIRE |
Externí odkaz: |