Discovering Association Rules on Experiences from Large-Scale Blog Entries
Autor: | Takeshi Kurashima, Ko Fujimura, Hidenori Okuda |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Lecture Notes in Computer Science ISBN: 9783642009570 ECIR |
DOI: | 10.1007/978-3-642-00958-7_49 |
Popis: | This paper proposes a method for discovering association rules on peoples' experiences extracted from a large-scale set of blog entries. In our definition, a person's experience can be expressed by five attributes: time, location, activity, opinion and emotion. The system implementing our proposed method actually generates and ranks association rules between attributes by applying several interestingness measures proposed in the area of data mining to the experiences extracted from 48 million blog entries. An experiment shows that the system successfully mines peoples' activities and emotions which are specific to location and time period. |
Databáze: | OpenAIRE |
Externí odkaz: |